Monoclinic superstructure of $\mathbf{S r M g F}_{4}$ with perovskite-type slabs

Nobuo Ishizawa, ${ }^{\text {a* }}$ Katsumi Suda, ${ }^{\text {a }}$ Barbara E. Etschmann, ${ }^{\text {a }}$ Takashi Oya ${ }^{\text {a }}+$ and Nobuhiro Kodama ${ }^{\text {b }}$

${ }^{\text {a }}$ Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226, Japan, and ${ }^{\mathbf{b}}$ Department of Materials Science and Engineering, Akita University, Akita 010-8502, Japan
Correspondence e-mail: nishizaw@n.cc.titech.ac.jp

Received 8 March 2001
Accepted 20 April 2001

Crystals of Ce-doped SrMgF_{4}, strontium magnesium tetrafluoride, have been found to have a monoclinic $P 2_{1}$ structure with doubled a and tripled c cell lengths compared with the orthorhombic Cmcm structure previously reported in the literature. The perovskite-type slabs, composed of cornersharing MgF_{6} octahedra and Sr atoms, are stacked along the b axis. The six crystallographically independent MgF_{6} octahedra are rotated so as to provide long periodicities along a and \mathbf{c}. The coordination numbers and bond distances around the six crystallographically independent Sr atoms are slightly different in each case. In the superstructure, the Sr atoms lie on local mirror planes which are thought to originate at the high-temperature phase transition.

Comment

Crystals of the $(\mathrm{Sr}, \mathrm{Ba}) \mathrm{MgF}_{4}$ solid solution have attracted attention as host materials for optical applications (Banks et al., 1980; Yamaga et al., 2000). The room-temperature structure of the end member, SrMgF_{4}, was reported to have orthorhombic symmetry in the space group Cmcm , with $a=$ 3.917 (2), $b=14.451$ (8) and $c=5.637$ (3) Å, determined by powder diffraction (Banks et al., 1982). In the present study, however, it was found that the Ce -doped SrMgF_{4} crystal has a monoclinic superstructure with doubled a and tripled c cell lengths with respect to the Cmcm unit cell.

The structure of SrMgF_{4} projected along \mathbf{c}, \mathbf{a} and \mathbf{b}^{*} is shown in Figs. 1, 2 and 3, respectively. The first setting, with a unique c axis, was used to match the 2_{1} axis with those in the $C m c m$ and $C m c 2_{1}$ modifications. The structure is essentially regarded as the end member $(n=2)$ of the homologous series $A_{n} B_{n} X_{3 n+2}$ with perovskite-type slabs (Ishizawa et al., 1975), where A is an alkaline, alkali earth or rare earth element, B is a metal element with octahedral coordination and X is oxygen or a halogen. The perovskite-type slab is composed of corner-

[^0]sharing MgF_{6} octahedra and Sr atoms, and is extended infinitely along \mathbf{a} and \mathbf{c}. Neighbouring slabs are shifted by $\mathbf{a} / 4$, corresponding to half the height of an octahedron, as shown in Fig. 1. The rotation of MgF_{6} octahedra projected along \mathbf{a}, as shown in Fig. 2, closely resembles those reported for the $C m c 2_{1}$ modifications of BaZnF_{4} (von Schnering \& Bleckmann, 1968), BaMgF_{4} (Gingl, 1997) and $\mathrm{Ba}_{1-x} \mathrm{Sr}_{x} \mathrm{MgF}_{4}$, with $x=0.27$ and 0.55 (Kubel et al., 1997).

Although the six octahedra, $\mathrm{Mg}_{\mathrm{F}}^{6}-\mathrm{Mg}_{6} \mathrm{~F}_{6}$, are crystallographically independent, they have approximately the same shape. The octahedral rotation occurs in a complicated manner, as shown in Fig. 3. The rotation can be split into three orthogonal components about the a, b^{*} and c axes. All octahedra are rotated by $15-20^{\circ}$ about a. $\mathrm{Mg}_{1} \mathrm{~F}_{6}$ and $\mathrm{Mg} 4 \mathrm{~F}_{6}$ are rotated approximately 8° about \mathbf{b}^{*}, while the rotation for the other MgF_{6} octahedra is negligible about \mathbf{b}^{*}. Conversely, the rotation about \mathbf{c} is negligible for $\mathrm{Mg}_{1 \mathrm{~F}}^{6}$ and $\mathrm{Mg} 4 \mathrm{~F}_{6}$, and approximately 8° for the other MgF_{6} octahedra. The complexity of the octahedral rotation results in the formation of a relatively large unit cell with tripled c and doubled a cell lengths.

Although there are no constraints among the positional parameters of the six independent Sr atoms, they align almost on a plane perpendicular to a, as shown in Figs. 1 and 3. The
 octahedra pairs are related by a pseudo-mirror plane formed by the Sr atoms. Since the neighbouring slabs are shifted by half the height of an MgF_{6} octahedron, these mirrors are local symmetries effective only within every other slab. Such local mirrors in perovskite-type slabs also exist in the monoclinic

Figure 1
A polyhedral view of SrMgF_{4} projected along c. Displacement ellipsoids for Sr atoms are drawn at the 97% probability level.
modifications of $\mathrm{La}_{2} \mathrm{Ti}_{2} \mathrm{O}_{7}$ (Gasperin, 1975) and $\mathrm{Ca}_{2} \mathrm{Nb}_{2} \mathrm{O}_{7}$ (Ishizawa et al., 1980), which are $n=4$ members of the $A_{n} B_{n} X_{3 n+2}$ series. The phase transition in BaMgF_{4} at 1082 K (Bingyi \& Banks, 1982) could be the origin of such local mirror symmetries, as is the case for $\mathrm{La}_{2} \mathrm{Ti}_{2} \mathrm{O}_{7}$ (Ishizawa et al., 1982).

It is appropriate to assume that the prototype structure of BaMgF_{4} has orthorhombic Cmcm symmetry with unit-cell vectors $\mathbf{a}_{0}=\frac{1}{2} \mathbf{a}, \mathbf{b}_{0}=\frac{1}{2} \mathbf{a}+2 \mathbf{b}$ and $\mathbf{c}_{0}=\frac{1}{3} \mathbf{c}$. However, the Cmcm structure of SrMgF_{4} determined at room temperature by powder diffraction (Banks et al., 1982) contains some geometrical problems. In particular, the Mg atoms are shifted, somewhat unusually, from the centre of each coordination octahedron, resulting in a range of $\mathrm{Mg}-\mathrm{F}$ bond distances, i.e. $1.71 \AA \times 2,1.92 \AA \times 2$ and $2.04 \AA \times 2$. The $1.71 \AA$ distances are rather short for MgF_{6} octahedra, as the effective ionic radius is $1.3 \AA$ for F^{-}and $0.72 \AA$ for Mg^{2+} (Shannon, 1976). No such problem was observed in the present study; all $\mathrm{Mg}-\mathrm{F}$ distances in the six independent MgF_{6} octahedra fall within the range $1.91-2.04 \AA$.

As shown in Fig. 3, the Sr atoms are shifted onto the pseudo-mirror planes to fit in the space formed by the six MgF_{6} octahedra of a slab and one MgF_{6} of a neighbouring slab. The Ce dopant supposedly replaces Sr , as the ionic radius of Ce is much closer to Sr than Mg . Therefore, the modulation of the coordination geometry around various Sr sites becomes important for understanding the optical properties of Ce doped SrMgF_{4}. If we count F atoms with $\mathrm{Sr}-\mathrm{F}$ distances less than the shortest $\mathrm{Sr}-\mathrm{Mg}$ distance, there are eight F atoms around Sr 1 at distances in the range $2.46-2.80 \AA$, and three more in the range $2.98-3.36 \AA$. There is a gap of $0.18 \AA$ between these two groups of bond distances. The coordination number of Sr 1 may thus be expressed as $8+3$. In a similar way, there are seven $F(2.45-2.65 \AA)$ plus three $F(2.95-3.16 \AA)$ around Sr 2 , nine $\mathrm{F}(2.39-2.70 \AA)$ around Sr 3 , nine $\mathrm{F}(2.45-$ $2.71 \AA$) around $\operatorname{Sr} 4$, seven $F(2.37-2.73 \AA)$ plus three $F(3.00-$ $3.38 \AA$) around $\operatorname{Sr} 5$ and ten $F(2.43-2.93 \AA)$ around $\operatorname{Sr} 6$.

Figure 2
A polyhedral view of SrMgF_{4} along a. Displacement ellipsoids for Sr atoms are drawn at the 97% probability level. The two crystallographically independent octahedra fall at nearly the same positions in the projection along \mathbf{a}.

Regarding the coordination of $\mathrm{Sr} 3, \mathrm{Sr} 4$ and Sr 6 , there is no distinct gap in bond distances similar to that seen for $\mathrm{Sr} 1, \mathrm{Sr} 2$ and Sr 5 .

Figure 3
A polyhedral view of SrMgF_{4} projected along \mathbf{b}^{*}. Displacement ellipsoids for Sr atoms are drawn at the 97% probability level. Arrows show the directions of rotation of the MgF_{6} octahedra.

Experimental

Ce-doped SrMgF_{4} crystals were grown by the Bridgman method (Bridgman, 1925). The starting $4 N$ grade powders were mixed together in a $\mathrm{CeF}_{3}: \mathrm{SrF}_{3}: \mathrm{MgF}_{2}$ ratio of 0.005:0.995:1. This mixture was placed in a carbon crucible which was heated in a resistance furnace under an argon atmosphere. A colourless single crystal of about 18 mm diameter and 30 mm length was grown by displacing the crucible vertically at a speed of $0.07 \mathrm{~mm} \mathrm{~h}^{-1}$. The atomic ratio of Sr to Ce was determined by X-ray fluorescence spectrometry to be $0.9994: 0.0006$. Since the concentration of Ce was considered to be negligible, a stoichiometric composition of SrMgF_{4} was assumed for the structure analysis.

Crystal data

SrMgF_{4}

$M_{r}=187.92$
Monoclinic, $P 112_{1}$
$a=7.8249$ (8) A
$b=7.4930$ (7) \AA
$c=16.9248(17) \AA$
$\gamma=105.041(11)^{\circ}$
$V=958.34(17) \AA^{3}$
$Z=12$

Data collection

Rigaku R-AXIS RAPID Imaging
Plate diffractometer

ω scans

Absorption correction: Gaussian
(RAPID AUTO; Rigaku, 1999)
$T_{\text {min }}=0.020, T_{\text {max }}=0.257$
58521 measured reflections

Refinement

Refinement on F
$R=0.044$
$w R=0.037$
$S=3.14$
4130 reflections
326 parameters
$(\Delta / \sigma)_{\max }<0.001$
$D_{x}=3.907 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 87446 reflections
$\theta=-30$ to 70°
$\mu=16.99 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Irregular, colourless
$0.30 \times 0.20 \times 0.15 \mathrm{~mm}$

7537 independent reflections
4369 reflections with $I>3 \sigma(I)$
$R_{\text {int }}=0.073$
$\theta_{\text {max }}=45.3^{\circ}$
$h=-13 \rightarrow 15$
$k=-14 \rightarrow 11$
$l=-33 \rightarrow 33$
$\Delta \rho_{\text {max }}=2.00 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-1.85 \mathrm{e}^{-3}$
Extinction correction: Zachariasen (1968)

Extinction coefficient: $2.35(6) \times 10^{3}$
Absolute structure: Flack (1983)
Flack parameter $=0.097(8)$

Table 1
Selected bond lengths (\AA).

$\mathrm{Mg} 1-\mathrm{F} 2$	$1.931(5)$	$\mathrm{Mg} 4-\mathrm{F} 13$	$1.921(5)$
$\mathrm{Mg} 1-\mathrm{F} 10$	$1.950(5)$	$\mathrm{Mg} 4-\mathrm{F} 14^{\mathrm{ii}}$	$1.946(5)$
$\mathrm{Mg} 1-\mathrm{F} 1$	$1.978(5)$	$\mathrm{Mg} 4-\mathrm{F} 10^{\mathrm{ii}}$	$1.973(5)$
$\mathrm{Mg} 1-\mathrm{F} 22$	$1.980(5)$	$\mathrm{Mg} 4-\mathrm{F} 22$	$1.999(6)$
$\mathrm{Mg} 1-\mathrm{F} 4$	$1.985(5)$	$\mathrm{Mg} 4-\mathrm{F} 16^{\mathrm{iii}}$	$2.012(5)$
$\mathrm{Mg} 1-\mathrm{F} 3$	$1.994(5)$	$\mathrm{Mg} 4-\mathrm{F} 15$	$2.028(5)$
$\mathrm{Mg} 2-\mathrm{F} 4^{\mathrm{i}}$	$1.929(5)$	$\mathrm{Mg} 5-\mathrm{F} 16^{\mathrm{ii}}$	$1.934(4)$
$\mathrm{Mg} 2-\mathrm{F} 5$	$1.959(5)$	$\mathrm{Mg} 5-\mathrm{F} 17$	$1.981(5)$
$\mathrm{Mg} 2-\mathrm{F} 11$	$1.969(4)$	$\mathrm{Mg} 5-\mathrm{F} 11$	$1.989(5)$
$\mathrm{Mg} 2-\mathrm{F} 23$	$1.999(4)$	$\mathrm{Mg} 5-\mathrm{F} 19^{\mathrm{ii}}$	$1.990(5)$
$\mathrm{Mg} 2-\mathrm{F} 6$	$2.010(5)$	$\mathrm{Mg} 5-\mathrm{F} 18$	$2.004(5)$
$\mathrm{Mg} 2-\mathrm{F} 7$	$2.041(5)$	$\mathrm{Mg} 5-\mathrm{F} 23^{\mathrm{ii}}$	$2.013(5)$
$\mathrm{Mg} 3-\mathrm{F} 8$	$1.910(5)$	$\mathrm{Mg} 6-\mathrm{F} 19$	$1.934(5)$
$\mathrm{Mg} 3-\mathrm{F} 7$	$1.966(4)$	$\mathrm{Mg} 6-\mathrm{F} 20$	$1.987(5)$
$\mathrm{Mg} 3-\mathrm{F} 24$	$1.981(5)$	$\mathrm{Mg} 6-\mathrm{F} 12^{\mathrm{iv}}$	$1.989(4)$
$\mathrm{Mg} 3-\mathrm{F} 12$	$1.987(5)$	$\mathrm{Mg} 6-\mathrm{F} 24$	$1.989(5)$
$\mathrm{Mg} 3-\mathrm{F} 2$	$2.011(5)$	$\mathrm{Mg} 6-\mathrm{F} 21$	$2.000(5)$
$\mathrm{Mg} 3-\mathrm{F} 9$	$2.025(5)$	$\mathrm{Mg} 6-\mathrm{F} 14$	$2.040(5)$

Symmetry codes: (i) $1-x, 1-y, z-\frac{1}{2}$; (ii) $x-1, y, z$; (iii) $1-x, 1-y, \frac{1}{2}+z$; (iv) $1+x, y, z$.

Since there were virtually no significant reflections at 2θ higher than 90°, all data in this region were eliminated. Equivalent reflections were merged using Xtal3.4 (Hall et al., 1995). Friedel pairs were considered as separate reflections for the merge. In all, 4369 independent Friedel pairs with $I>3 \sigma(I)$ and $R_{\text {int }}=0.073$ were used for the structure determination and the refinement procedure. The z coordinate of Sr4 was fixed at $\frac{1}{2}$ to define the origin.

Data collection: RAPID AUTO (Rigaku, 1999); cell refinement: RAPID AUTO; data reduction: RAPID AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: CRYLSQ in Xtal3.4 (Hall et al., 1995); molecular graphics: ATOMS (Dowty, 1999); software used to prepare material for publication: BONDLA and CIFIO in Xtal3.4.

We are grateful to K. Sasaki and T. Higashi, Rigaku Corporation, for technical support regarding the RAPID AUTO software, and to M. Mizuhira, Application Laboratory,

Philips Japan Ltd, for the XRF analysis of the SrMgF_{4} compound. The study was supported by Grants-in-Aid for Scientific Research Nos. 11450245 and 12875120 from the Ministry of Education, Science and Culture, Japan, and by the Inter-University Cooperative Research Program of the Materials and Structures Laboratory, Tokyo Institute of Technology, Japan.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR1328). Services for accessing these data are described at the back of the journal.

References

Banks, E., Jenkins, R. \& Post, B. (1982). The Rare Earths in Modern Science and Technology, Vol. 3, edited by G. J. McCarthy, H. B. Silber \& J. J. Rhyne, pp. 329-334. New York: Plenum.
Banks, E., Nakajima, S. \& Shone, M. (1980). J. Electrochem. Soc. Solid State Sci. Technol. 127, 2234-2239.
Bingyi, Q. \& Banks, E. (1982). Mater. Res. Bull. 17, 1185-1189.
Bridgman, P. W. (1925). Proc. Am. Acad. Arts Sci. 60, 305.
Dowty, E. (1999). ATOMS for Windows. Version 4.0. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Gasperin, P. M. (1975). Acta Cryst. B31, 2129-2130.
Gingl, F. (1997). Z. Anorg. Allg. Chem. 623, 705-709.
Hall, S. R., King, G. S. D. \& Stewart, J. M. (1995). Editors. Xtal3.4 User's Manual. University of Western Australia, Perth: Lamb.
Ishizawa, N., Marumo, F., Iwai, S., Kimura, M. \& Kawamura, T. (1980). Acta Cryst. B36, 763-766.
Ishizawa, N., Marumo, F., Iwai, S., Kimura, M. \& Kawamura, T. (1982). Acta Cryst. B38, 368-372.
Ishizawa, N., Marumo, F., Kawamura, T. \& Kimura, M. (1975). Acta Cryst. B31, 1912-1915.
Kubel, F., Hagemann, H. \& Bill, H. (1997). Mater. Res. Bull. 32, 263-269.
Rigaku (1999). RAPID AUTO. Manual No. MJ13159A01. Rigaku Corporation, Tokyo, Japan.
Schnering, H. G. von \& Bleckmann, P. (1968). Naturwissenschaften, 55, 342343.

Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Sheldrick, G. M. (1997). SHELXS97. University of Göttingen, Germany.
Yamaga, M., Imai, T. \& Kodama, N. (2000). J. Lumin. 87-89, 992-994.
Zachariasen, W. H. (1968). Acta Cryst. A24, 212-216.

[^0]: \dagger On leave from Tokai University, Hiratsuka, Kanagawa 259-1292, Japan.

